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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. We study coding for binary channels in which
out of any two consecutive transmitted bits at most one can be
affected by errors. We consider a set of basic coding problems
for such channels, deriving estimates on the size of optimal codes
and also providing some constructions. We further consider a
probabilistic model of noise with nonadjacent errors, as well as
a generalization to errors separated by at least s = 2, 3, . . .
error-free channel uses.

Index Terms—Non-adjacent errors, bounds on codes, list
decoding, channel capacity, linear codes

I. INTRODUCTION

Constrained systems, in particular, channels with data-
dependent noise and channels with memory play an important
role in the analysis of performance of magnetic recording
devices and other storage systems [6]. Recent works [4], [7]
considered a model of errors for a high-density magnetic
recording channel, in which the action of errors on the
recorded data depends on the contents of the memory cells.
Under this model, errors can occur in a cell (bit) only if its
contents is different from the contents of the previous cell.
Another feature of this model, imposed by the nature of the
read/write process in memory, is that errors never occur in
adjacent cells. In this paper we assume the last property as
a definition of the error process and analyze the problem of
coding against errors in the combinatorial and probabilistic
context.

II. CODES CORRECTING NON-ADJACENT ERRORS

The following general definition characterizes codes cor-
recting a given set of errors.

Definition 2.1: A code C ⊂ {0, 1})n is said to correct errors
from a set E ⊂ {0, 1}n if for all x 6= x′ ∈ C and for any
e, e′ ∈ E,

x + e 6= x′ + e′,

where the addition is modulo 2. Vectors from the set E are
called correctable errors for C.

A vector e = (e1, . . . , en) ∈ {0, 1}n will be called a non-
adjacent error vector if for all 1 ≤ i < n, ei = 1 implies
ei+1 = 0. As usual, the weight (multiplicity) of error wH(e)
is equal to the number of ones in e.
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Let En,t = {e ∈ {0, 1}n : wH(e) ≤ t} and let En,t ⊂
En,t be the set of all non-adjacent error vectors of weight
less than or equal to t. We say that a code code C is t-non-
adjacent error-correcting if in the above definition E = En,t.
In the standard scenario of coding theory, a t-error-correcting
code corresponds to choosing E = En,t, i.e., all the errors of
multiplicity not exceeding some t > 0.

We begin with computing the cardinality of the set En,t. The
proof of the next proposition is obtained by a simple counting
argument, omitted here.

Proposition 2.2:

|En,t| =
t∑
i=0

(
n− i+ 1

i

)
. (1)

Let h(z) = −z log2 z − (1 − z) log2(1 − z) be the binary
entropy function. Observe that

lim
n→∞

1
n

log |En,τn| = (1− τ) h
( τ

1− τ

)
, (2)

for τ ≤ 1
2 −

√
5

10 ≈ 0.2764. This asymptotic formula follows
from the observation that

(
n−i+1

i

)
increases on i for i ≤

1
10 (5n+3−

√
5n2 + 10n+ 9). Thus, as long as t/n ≤ 1

2−
√

5
10 ,

the asymptotics of the summation
∑t
i=0

(
n−i+1

i

)
is determined

by the term
(
n−t+1

t

)
, and (1) follows by standard estimates of

binomial coefficients (for example, see [5, p. 310]).

A. Bounds on non-adjacent error correcting codes. Clearly
a t-error-correcting code is t-non-adjacent error-correcting.
Somewhat surprisingly, the converse is also true.

Proposition 2.3: A code C is t-non-adjacent error-
correcting if and only if it is t-error-correcting.

Proof: Observe that En,t+En,t = En,2t, or in other words,
any vector of weight ≤ 2t can be written as a sum of two
non-adjacent errors of weight ≤ t. At the same time. also
En,t + En,t = En,2t.

Suppose that a code C is t-non-adjacent error-correcting,
but there exist uncorrectable errors e, e′ ∈ En,t, i.e., for some
x 6= x′ ∈ C, we have x + e = x′ + e′. This implies that
x = x′ + (e′ + e) = x′ + z, where z ∈ En,2t Then write
z = e′1 + e1, where e′1, e1 ∈ En,t. This implies the equality
x + e1 = x′ + e′1, which is a contradiction.

It would seem that the problem of correcting t non-adjacent
errors is equivalent to correcting arbitrary t errors. The follow-
ing theorem proves that this is not the case.

Theorem 2.4: There exists a linear code C of rate

lim inf
n→∞

1
n

log |C| ≥ 1
2
(1− h(2τ)).



that can correct any t = τn non-adjacent errors with a
polynomial time decoding algorithm.

Proof: We will only consider the case of n even (the case
of odd n is established in a similar way). Let C′ be a linear
[n/2, k, t+1] code1. Construct a code C from C′ by repeating
each coordinate in C′ twice: namely, for each codeword x′ =
(x′1, . . . , x

′
n/2) ∈ C

′, form the vector x ∈ (x1, . . . , xn) ∈ C
by putting x2i = x2i−1 = x′i for 1 ≤ i ≤ n/2. Clearly, the
code C is linear and |C| = |C′|.

The code C is decoded by the following two-step procedure.
Suppose that a vector z = (z1, . . . , zn) ∈ {0, 1}n is received
from the channel. In the first step, we construct a vector z′ =
(z′1, . . . , z

′
n/2) ∈ {0, 1, ε}

n/2 from z; here ε is the erasure
symbol. For 1 ≤ i ≤ n/2, we set z′i = z2i if z2i = z2i−1, or
otherwise we set zi = ε.

If there are at most t non-adjacent errors then z′ will
contain at most t erasure symbols. The code C′ will then be
used to correct them which is possible by a polynomial-time
procedure.

To estimate the cardinality of the code C, take a linear code
C′ of distance t+ 1 that attains the Gilbert-Varshamov lower
bound. Then

|C′| ≥ 2n/2∑t
i=0

(
n/2−1
i

) .
The estimate of the theorem is obtained by using a standard
asymptotic estimate for the sum of binomial coefficients.
This theorem justifies the claim made before its statement:
for τ = 1/4(1 − θ), where θ is small, the estimate of rate
established in it behaves as θ2(log2 e)/4 while the rate of
the best known polynomial-time decodable τn-error-correcting
codes approaches 0 in proportion to θ3.

B. List decoding. The gap between error correcting codes
and non-adjacent error correcting codes becomes even more
pronounced if we consider decoding into a list. Formally,
a code C is list-of-L t-non-adjacent-error-correcting ((L, t)-
NAECC) if for any vector x ∈ {0, 1}n,

|{c ∈ C : x + c ∈ En,t}| ≤ L.

In words, for any received vector x ∈ {0, 1}n, there are at
most L codewords that could be transformed to x by the action
of an error e ∈ En,t.

As usual, let M(n, t;L) be maximum size of an (L, t)-
NAECC of length n. For 0 ≤ τ ≤ 1/2 define

R(τ ;L) = lim inf
n→∞

(1/n) log2M(n, bnτc;L)

and

R(τ ;L) = lim sup
n→∞

(1/n) log2M(n, bnτc;L).

The following theorem contains elementary upper and lower
bounds on the size of list codes.

1Throughout the paper we write use the notation C[n, k, d] to refer to a
linear binary code of length n, dimension k and minimum Hamming distance
d.

Theorem 2.5:

2
nL

L+1∑t
i=0

(
n−i+1

i

) ≤M(n, t;L) ≤ L2n∑t
i=0

(
n−i+1

i

) .
Proof: We begin with the lower bound. Let us construct

the code by choosing M codewords randomly and uniformly
with replacement from {0, 1}n. For a fixed vector y ∈ {0, 1}n,
call the choice of any L+ 1 codewords c1, . . . , cL+1 ‘bad’ if
c1, . . . , cL+1 ∈ {y + e : e ∈ En,t}. Clearly, the expected
number of bad choices for a random code C is less than or
equal to

2n
(

M

L+ 1

)(
|En,t|
2n

)L+1

<
(
M

t∑
i=0

(
n− i+ 1

i

))L+1

2−nL,

where we have used the equality of (1). Take M =
2nL/(L+1)/

∑t
i=0

(
n−i+1

i

)
, then the ensemble-average number

of bad (L + 1)-tuples is less than 1. Therefore there exists a
code of size M in which all the (L+ 1)-tuples of codewords
are good. This implies the lower bound on M(n, t;L).

For the upper bound on M(n, t;L) we again use the
probabilistic method. Let C be an (L, t)-NAECC and let y
be a vector randomly and uniformly chosen from {0, 1}n. For
a fixed codeword c ∈ C, the probability,

Pr(c + y ∈ En,t) =
|En,t|
2n

.

Therefore,

E(|{c ∈ C : c + y ∈ En,t)}|) =
|C||En,t|

2n
.

This implies that there exists at least one vector y ∈ {0, 1}n
such that

L ≥ |{c ∈ C : c + y ∈ En,t)}|) >
|C||En,t|

2n
.

This proves the upper bound on M(n, t;L).
The above theorem along with (2) implies that whenever

τ ≤ 1
2 −

√
5

10 ,

1− (1− τ) h
( τ

1− τ

)
+

1
L+ 1

≤ R(τ ;L) ≤ R(τ ;L) (3)

≤ 1− (1− τ) h
( τ

1− τ

)
+ lim
n→∞

logL
n

.

An equivalent results for list decoding of ordinary binary
code is well known (it is present in some form in [2]): the
estimates (3) are valid for list-of L t-error-correcting codes if
(1 − τ) h

(
τ

1−τ
)

is replaced by h(τ). Concavity implies that

(1 − τ)h
(

τ
1−τ

)
< h(τ), so we have proved that there exist

codes of higher rates for list decoding in the case of non-
adjacent errors than in the case of usual errors of the same
multiplicity. Thus, non-adjacent errors are less adversarial than
unrestricted errors (as should be expected), so codes of higher
rates are possible. Later in the paper we will see that this claim
also holds true for probabilistic error correction.



III. BIGGER GAPS: INTERMITTENT ERRORS

In this section we consider the case when the gap between
two errors is at least s = 2, 3, . . . bits. Let Esn,t be the set of
all binary vectors of length n and weight t, where between any
two ones, there are at least s zeros. Clearly, n > (s+ 1)(t−
1). Codes correcting t intermittent errors satisfy Definition
2.1 with E = Esn,t and will be called (s, t) intermittent-error
correcting.

Proposition 3.1:

|Esn,t| =
t∑
i=0

(
n− (i− 1)s

i

)
. (4)

Proof: Let us count the number of binary vectors of
weight i which any two ones are separated by at least s
zeros ((s,∞) patterns in the language of constrained systems).
Trying to place i ones in n cells so that every two are separated
by ≥ s empty cells leaves n − (i − 1)s cells for the ones
themselves. Any placement of ones in these cells gives rise to
a valid vector, which implies the claimed count.

As shown earlier, (1, t)-intermittent error correcting codes is
equivalent to t-error-correcting code. As s increases from one,
we expect to be able to construct codes of much higher rates
for intermittent errors than for usual errors. Let Ms(n, t) be the
size of the largest possible (s, t)-intermittent error correcting
code of length n.

Theorem 3.2:
2n∑2

l=0

(
n
l

)
+
∑2t
l=3

(
s+1
2

)l(n−(l−3)(s−1)
l

) ≤Ms(n, t)

≤ 2n∑t
l=0

(
n−(l−1)s

l

) .
Proof: The upper bound follows by an elementary

“sphere-packing” argument, while the lower bound is similar
to the Gilbert bound on error-correcting codes. Namely, sup-
pose that c1, c2 ∈ C are two codewords that can be confused
by the decoder. Then there exist e1, e2 ∈ Esn,t such that
c1 = c2 + e, where e = e1 + e2. Let

D = Esn,t + Esn,t = {e1 + e2 : e1, e2 ∈ Esn,t},

then we obtain that Ms(n, t) ≥ 2n/|D|. It remains to show
that

|D| ≤
2∑
l=0

(
n

l

)
+

2t∑
l=3

(
s+ 1

2

)l(
n− (l − 3)(s− 1)

l

)
.

Any vector e ∈ D must satisfy the following two properties:
1) 0 ≤ wH(e) ≤ 2t,
2) If the positions of the ones in e are j1, . . . , jl, l =

wH(e) ≥ 3, then for all 1 ≤ i ≤ l − 3, the vector
(eji , eji+1, . . . , eji+3) must contain at least s − 1 zeros
(to verify this, consider that e = e1 + e2, and that the
smallest number of zeros is obtained when the ones in
e1 and e2 are in disjoint locations).

Let us count the number of vectors that satisfy property 2.
Consider a binary vector of length n − (l − 3)(s − 1) and

weight l. As in the proof of the previous Proposition, the
count of such vectors is

(
n−(l−3)(s−1)

l

)
. Further, the remaining

part of the vector e (i.e., (eji , eji+1, . . . , eji+3)) has the form
(10 . . . 010 . . . 010 . . . 1), where the two ones in the middle are
placed in an arbitrary way. This gives

(
s+1
2

)
possibilities for

any choice of ji, 1 ≤ i ≤ l − 3. Taking account of the fact
that 0 ≤ l ≤ 2t, we obtain the final estimate.

Observe that for s = 1 we recover the standard GV bound,
as is to be expected. Note also that the calculations for list
decoding of Thm. 2.5 can be generalized to s > 2 without
difficulty.

A. Constructions

In this section we make brief remarks on constructing (s, t)-
intermittent error-correcting codes.

Construction 1: Let s = 2m − 1 for some integer m, and
suppose that s divides n. (The construction can be extended
without much effort for general s.)

Consider a Hamming code H with parameters [s, s−m, 3].
Consider a direct concatenation of n/s copies of H,

C = {(c1|c2| . . . |cn
s
) : ci ∈ H, 1 ≤ i ≤ n/s}.

The rate of the code C is equal to

2m −m− 1
2m − 1

= 1− log (s+ 1)
s

.

The code C is an (s, t)-intermittent error-correcting for any
t ≥ 0. This is because each Hamming sub-block of a codeword
of C has to correct at most one error.

In the next section we consider a probabilistic model of
the channel with intermittent errors. The above construction
establishes that the zero-error capacity for such a channel is
at least 1− log (s+ 1)/s.

Construction 2: The construction of Theorem 2.4 can be
viewed as a concatenation of a binary code A of length
n/2 and a [2, 1, 2] repetition code B. Taking instead a Reed-
Solomon code A of length q = 2s−1 and distance t+ 1 over
Fq and a [s, s − 1, 2] binary single parity-check code B, we
construct a concatenated code C that corrects t intermittent
errors. This is because every block of s symbols will include
at most one error which will be detected by the code B. The set
of ≤ t erasures resulting from inner decoding will be corrected
by the code A. Here the rate of the inner code B is s−1

s , and
the rate of the outer code A is 2s−1−t

2s−1 . The code C will have
length n = s2s−1 and rate R =

(
1 − 1

s

)(
1 − t

2s−1

)
. It is

possible to have more constructions using code concatenation
techniques.

In conclusion, note that both constructions presented here
have polynomial-time encoding and decoding procedures.

IV. CHANNEL CAPACITY

Thus far in this paper, we have considered a combinatorial
model of the non-adjacent errors. We will now switch to a
parallel track by defining a natural probabilistic model of a



channel corresponding to the intermittent error channel defined
above. This is a binary-output channel that can make an error
only at positions that are at least s + 1 bits away. Our goal
is to estimate the Shannon-theoretic capacity for this channel
model. Let us proceed to formal definitions.

We consider a binary-input channel similar to the binary
symmetric channel, except that errors must be separated.
Formally, this is a channel with a binary input sequence
x = x1, x2, x3, . . ., with xi ∈ {0, 1} for all i, and a
binary output sequence y = y1, y2, y3, . . ., with yi ∈ {0, 1}
for all i. The input-output relationship is determined by a
binary sequence u = u1, u2, u3, . . ., which is a Markov
chain, independent of the input sequence x, with transition
probabilities P (ui|ui−1, ui−2, . . . , ui−s) defined as follows:

ui = 0 ui = 1
ui−l = 0, ∀1 ≤ l ≤ s 1− p p

∃ui−l = 1, for some 1 ≤ l ≤ s 1 0.
(5)

For any i the output of the channel is connected to the input
by the equation

yi = xi + ui.

We call this channel the binary-input intermittent
(BINInter(s, p)) channel.

The BINInter(s, p) is a discrete finite state channel (DFSC)
[3]. A stationary discrete finite-state channel (DFSC) has an
input sequence x = x1, x2, x3, . . ., an output sequence y =
y1, y2, y3, . . ., and a state sequence σ = σ1, σ2, σ3, . . .. Each
xn is a symbol from a finite input alphabet X , each yn is a
symbol from a finite output alphabet Y , and each state σn takes
values in a finite set of states S. To complete the description
of the channel, an initial state σ0, also taking values in S, must
be specified. For a detailed discussion of DFSCs we refer the
reader to [3].

For a DFSC, we define the lower (or pessimistic) capacity
C = limn→∞ Cn, and upper (or optimistic) capacity C =
limn→∞ Cn, where

Cn = n−1 max
Qn(xn)

min
σ0∈S

I(xn; yn | σ0)

Cn = n−1 max
Qn(xn)

max
σ0∈S

I(xn; yn | σ0).

In the above expressions, I(xn; yn | σ0) is the mutual
information between the length-n input xn = (x1, . . . , xn)
and the length-n output yn = (y1, . . . , yn), given the value of
the initial state σ0, and the maximum is taken over probability
distributions Qn(xn) on the input xn. The limits in the above
definitions of C and C are known to exist. Clearly, Cn ≤ Cn
for all n, and thus, C ≤ C. The capacities C and C have an
operational meaning in the usual Shannon-theoretic sense —
see Theorems 4.6.2 and 5.9.2 in [3].

The upper and lower capacities coincide for a large class of
channels known as indecomposable channels. Theorem 4.6.3
of [3] gives an easy-to-check necessary and sufficient condi-
tion for a DFSC to be indecomposable: for some fixed n and
each xn, there exists a choice for σn (which may depend on

xn) such that
min
σ0

q(σn | xn, σ0) > 0. (6)

We make a few comments about DFSCs for which C = C
holds, denoting by C the common value of C and C. This
C, which we call simply the capacity of the DFSC, can be
expressed alternatively. If we assign a probability distribution
to the initial state, so that σ0 becomes a random variable, then
C = limn→∞ Cn, where

Cn =
1
n

max
Qn(xn)

I(xn; yn | σ0). (7)

Clearly, Cn ≤ Cn ≤ Cn for all n, so that C, as defined above,
is indeed the common value of C and C. Note that this is
independent of the choice of the probability distribution on
σ0.

It is easy to see that the BINInter channel is a DFSC, where
the nth state σn is a number i ∈ {0, 1, 2, . . . , s} , S. Suppose
that ` ≥ 0 is the smallest number such that un−` = 1. If
no such ` exists then set ` = ∞. Whenever ` ≤ s, we set
σn = `. For ` > s, we set σn = s. For completeness, we
introduce an initial state σ0 that takes values in S. When n <
s, σn = min(n + σ0, `, s). The main result of this section is
the following.

Theorem 4.1: For the BINInter(s, p) channel with parame-
ter p ∈ [0, 1], we have C = C = C(p) , 1− h(p)

1+sp .
We begin with two lemmas.

Lemma 4.2: For the BINInter(s, p) channel with parameter
p = 1, we have C = C = C(1) = 1.

Proof: Since p = 1, once the initial state σ0 is fixed,
the output y of the BINInter channel becomes a deterministic
function of the input x (i.e. the u sequence is fixed with
probability 1). Therefore, for any fixed a ∈ S , we have
H(yn | xn, σ0 = a) = 0, and hence, I(xn; yn | σ0 = a) =
H(yn | σ0 = a). If xn is a sequence of i.i.d. Bernoulli(1/2)
random variables, then mina∈S H(yn | σ0 = a) = n. It
follows that Cn ≥ 1, so that C ≥ 1. On the other hand
C ≤ C ≤ 1.

Next, we look into the case when p < 1.
Lemma 4.3: The BINInter(s, p) channel is indecomposable

for p < 1.
Proof: We must check that the condition in (6) holds.

Take n = s and σn = s, then minσ0 q(σn | xn, σ0) = (1 −
p)s > 0.
Now we proceed to prove Thm. 4.1.

Proof of Thm. 4.1: We assume that p < 1, so the channel
is indecomposable and its capacity is defined by (7).

The state sequence σ = σ0, σ1, . . . ;σi ∈ S = {0, 1, . . . , s}
forms a first-order Markov chain whose (nonzero) transition
probabilities are given by

Pr(σn = i+ 1 | σn−1 = i) = 1, 0 ≤ i ≤ s− 1
Pr(σn = 0 | σn−1 = s) = p,

Pr((σn = s | σn−1 = s) = 1− p



All other transition probabilities are zero. The stationary
distribution of this Markov chain is the following:

Pr(σn = s) =
1

1 + sp

Pr(σn = i) =
p

1 + sp
, 0 ≤ i ≤ s− 1.

We assume that the initial state σ0 follows this distribution as
well.

We have

I(xn; yn | σ0) = H(yn | σ0)−H(yn | xn, σ0)
(a)
= H(yn | σ0)−H(un | xn, σ0)
(b)
= H(yn | σ0)−H(σn | σ0),

where (a) is due to the fact that, given xn, the sequences yn

and un uniquely determine each other, and (b) follows because
un is independent of xn. Also given σ0, the sequences u
and σ completely determine each other. Further, since σ is a
stationary first-order Markov process, we have

H(σn | σ0) =
n∑
n=1

H(σn | σn−1) = nH(σ1 | σ0) = n
h(p)

1 + ps
.

Hence,

Cn = n−1 max
Qn(xn)

H(yn | σ0)−
h(p)

1 + ps
. (8)

Clearly, H(yn | u0) ≤ n. However, if xn is a sequence of
i.i.d. Bernoulli(1/2) random variables, then H(yn | σ0) = n.
Therefore,

lim
n→∞

Cn = 1− h(p)
1 + ps

.

As our final result, we show that capacity of the
BINInter(s, p) can be achieved by binary linear codes.

Theorem 4.4: Let C = 1 − h(p)
1+ps , ε > 0. There exists a

sequence of binary linear codes of growing length n and rate
R = C − ε for which the error probability of decoding on the
BINInter(s, p) is less than

Proof: (outline) We will prove the theorem by construct-
ing a sequence of linear codes for which the set of “typical
errors” that occur in the channel is formed of vectors with
distinct syndromes.

Let R = C − ε and let n be an integer (the code length).
Consider the ensemble of linear codes defined by random
parity-check matrices of dimensions (1 − R)n × n with
Bernoulli(1/2) independent entries. The rate of any code in
the ensemble is at least R. The probability that two vectors
x 6= y ∈ {0, 1}n have the same syndrome equals

Pr(Hx 6= Hy) = Pr(H(x + y) = 0) =
1

2n−Rn
.

If such an event occurs, the errors x,y contribute to the
decoding error event. Now let E be an (unspecified) set of
error vectors. By the Lovász Local Lemma (see [1]), if

2e|E|
2n−Rn

≤ 1,

then there exists a matrix H with no two errors in the set
E colliding. The code with this parity-check matrix will have
low error probability of decoding if errors outside E have a
small probability of occurring in the channel.

Now consider the set of vectors of length n (errors) gener-
ated by the random process described in (5). We claim that the
set of typical vectors generated by this process has cardinality

|E| ≤ 1
2e

2
n

(
h(p)
1+ps +ε

)
=

1
2e

2n−Rn

(estimating the cardinality is a standard but tedious calculation
which will be omitted). Concluding, there exists a linear code
of rate R = C − ε for which these errors will be decoded
correctly, and thus the overall decoding error probability will
be arbitrarily small.
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